#FLARE GAS PROBE

FLARE GAS PROBE

THE CHALLENGE

Inclined Stokes Law separator

Principle of operation validated by VSL, **Dutch Metrology Institute**

Principle of operation by mother nature, always works and is free of charae

Tested against and proven in extreme conditions

Including blow-back and optional manual rodding

No movina parts

Simple and easy maintenance

THE NEED

The flaw of most existing probes and sample conditioning systems is that they are designed to specifications which are typical snap-shots of a laboratory analysis and most often not based on excessive conditions when the measurements are needed most.

EXCESSIVE PROCESS

The special ASaP Flare Gas Probe has been developed taking excessive process conditions into

- Pipe line velocities > 100 m/s
- High fouling and particle load

COMPLIANC

As per November 2015, USA flares should comply with Subpart Ja 40CFR6 Subpart Ja – Total Sulfur / Hydrogen Sulfide (H2S) Measurements and 40CFR60.18 – Net Heating Value

ELARE GAS PROBE Lyggey again of

FIRST STAGE

Virtually maintenance free due to multi-stage operation

Prevent contamination entering the probe by using d'Alembert's Paradox. Using thermodynamic laws preventing fouling and particles entering the system.

SECOND STAGE

Sample and contamination separation by gravity by using Inclined Stokes-Law seperation.

THIRD STAGE Demister pads

FOURTH STAGE

Traditional filtering by using an external membrane filter.

FIFTH STAGE

Enhanced and extended maintenance interval by using hot condensate or wet steam back flush for removal of Heat Stable Salts.

